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Abstract— In human-robot collaboration, legible motion that
conveys a robot’s intentions and goals is known to improve
safety, task efficiency, and user experience. Legible robot motion
is typically generated using hand-designed cost functions and
classical motion planners. However, with the rise of deep
learning and data-driven robot policies, we need methods for
training end-to-end on offline demonstration data. In this paper,
we propose Legibility Diffuser, a diffusion-based policy that
learns intent expressive motion directly from human demon-
strations. By variably combining the noise predictions from a
goal-conditioned diffusion model, we guide the robot’s motion
toward the most legible trajectory in the training dataset. We
find that decaying the guidance weight over the course of the
trajectory is critical for maintaining a high success rate while
maximizing legibility.

I. INTRODUCTION
Imitation learning (IL) is a powerful paradigm that allows

robot policies to be trained on previously collected human
demonstrations. Offline IL allows robotics to scale with big
data, eliminating the need for costly environment interaction.
When training robots for human environments, leveraging
offline IL is especially important for safety and effectiveness.
For this reason, developing learning from demonstrations
(LfD) algorithms that are amenable to human-robot interac-
tion (HRI) is an important avenue of research. One important
characteristic of cooperative robots is legible motion that
clearly conveys the robot’s intentions and goals. It then seems
natural to ask: How can we directly learn legible robot
motion from previously collected human demonstrations?

As robots become more integrated into our daily lives, it is
critical that they move in a way that is not only efficient and
functional, but also legible and understandable to humans. In
HRI, legible motion conveys a robot’s intentions and goals
in an intuitive and interpretable manner [1], [2]. Making a
robot’s actions more transparent will allow humans to better
anticipate and respond to the robot. This can reduce the risk
of accidents and collisions, which is important in safety crit-
ical environments. Concretely, legible robot motion allows
an observer to make early and accurate predictions of an
agent’s target goal. Studies have shown that in collaborative
environments, this leads to faster task completion times and
fluent collaboration [3], [4].

Mathematically, a legible trajectory is one that maxi-
mizes p(g∗|ξs0→st) where g∗ is the goal and ξs0→st is
the ongoing trajectory [1]. Methods for generating legible
motion traditionally leverage hand designed cost functions
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Fig. 1. Legibility Diffuser is an off-line imitation learning algorithm that
can learn to generate the most legible modes from a multi-modal, multi-task
dataset of human demonstrations.

and classical motion planning algorithms to maximize this
term [1]. These classical approaches lack the scalability and
the flexibility afforded by deep imitation learning algorithms.
Deep learning approaches are state of the art in natural
language processing [5] and computer vision [6]. Large
scale data collection efforts are paving the way for these
data driven approaches in robotics [7]. In order to reap the
benefits of these large scale datasets, we need methods for
legible motion generation that learn directly from human
demonstrations.

To this end, our paper establishes a connection between
legible motion and conditional generative models [8], [9],
[10]. A critical feature of realistic human demonstrations
is that they are multi-task and multi-modal [11], [12]; they
show multiple ways of accomplishing a task or reaching a
goal. Our key insight is that we can generate intent expressive
motion by directly imitating the most legible mode from a
diverse dataset of human demonstrations. Specifically, we
introduce Legibility Diffuser (Fig 1), a conditional generative
policy that produces legible robot motion through diffusion
model guidance [13]. Our end-to-end method does not re-
quire estimating cost functions, classical motion planning,
or any labeling of the training dataset.

Our results show that Legibility Diffuser is able to suc-
cessfully imitate the most legible trajectories from a multi-
modal and multi-task demonstration dataset. Compared to
other imitation learning baselines, we find that Legibility
Diffuser is statistically significantly more legible across four
experiments, including a long-horizon manipulation task, and



a real robot evaluation. We are able to accomplish this
without access to the hand design cost functions that are
typically required to generate legible motion. Our experiment
shows that in the action generation domain, the class specific
features that are enhanced by diffusion model guidance are
the same features that make a trajectory legible. So just as
increasing guidance weights improves the quality of image
generators [13], increasing guidance weights improves the
legibility of action generators. We also find that decaying the
guidance weight over the course of the trajectory is important
for maintaining a high success rate.

II. PREVIOUS WORK

A. Legible Robot Motion

Shared intentionality is an important aspect of human
cognition, and being able to read intentions is critical for how
we collaborate as a species [14]. Intent expressive actions
(legible actions) are a form of non-verbal communication
that allows groups of agents to coordinate their behaviors.
This is useful for HRI because if robots forecast their next
move, they can fluidly interact and improvise with humans
[15]. Robots are more readable and understandable if they
have the capability to express forethought and respond to
task outcomes. This increases people’s perception of robots
and will make users more willing to engage in interactions
with legible robots [16]. Experiments have shown that legible
motion allows for faster completion time of collaborative
tasks and increased user satisfaction [4]. Importantly, motion
produced by robots is legible if it allows for quick and
confident predictions of the goal state.

Standard methods for generating legible motion [1] in-
volve hand designed cost functions as described in section
III-A. With these cost functions, classical motion planners
such as Covariant Hamiltonian Optimization [17] are able
to generate trajectories that maximize p(g∗|ξs0−>st), the
objective for legible motion. In our method, we directly learn
this distribution from the training data. The authors of [18]
use an actor critic approach to train a legible policy in an
online setting. In this paper we are specifically interested in
learning an end-to-end offline policy for legible motion.

B. Offline Imitation Learning

Imitation Learning (IL) is a paradigm for learning from
datasets of state action pairs which have been collected by
expert demonstrators. Empirically, studies have shown that
IL can achieve state-of-the-art performance across a variety
of tasks even with sub-optimal data [19], [8]. In the field of
HRI, learning from demonstrations is an important tool as
it allows for non-expert programming of desired behaviors
through kinesthetic teaching, teleoperation, or passive obser-
vation [20]. Another important factor is the safety afforded
by offline learning. Deploying agents that learn through en-
vironment interaction is dangerous because actions with low
reward (such as hitting a human) may be taken in the process
of exploration. This danger is mitigated with offline IL as no
environment exploration is necessary. From a deep learning
perspective, the benefits to learning from offline datasets are

scalability, portability, and reproducability. Compiling larger
datasets is routinely used to dramatically improve deep vision
and language models [21], [22]. There are ongoing efforts
to collect similar data for robotics [7].

In this paper, we are concerned with training an agent
to generate legible motion from multi-modal and multi-task
datasets. Multi-modal distributions don’t have a singular
deterministic action output; rather, there can be multiple
plausible actions from any given state. Algorithms such
as Implicit Behavioral Cloning [8], Conditional Behavioral
Transformers (C-BeT) [9], and Diffusion Policy [10] are all
capable of learning effective policies from such distributions.
In particular, algorithms based on Denoising Diffusion Prob-
abilistic Models (DDPMs) [23], such as Diffusion Policy
[10], have emerged as state of the art deep generative models
for offline learning. A unique aspect of DDPMs is their
ability to be guided through classifier free guidance, which
allows for controllable generation at evaluation time [13].
Diffusion model guidance has proven useful for a range
of tasks including offline reinforcement learning [24] and
image generation [13]. With Legibility Diffuser, we show
that guided generation from diffusion models can produce
intent-expressive motion.

III. PRELIMINARIES

A. Equations for Legible Motion

Mathematically, a legible trajectory ξ from start state s0
to goal state g∗ optimizes the following equation [1]:

legibility(ξ) =

∫
p(g∗|ξs0→st)f(t)dt∫

f(t)dt
(1)

Here f(t) is a function of time that puts higher weight
on earlier parts of the trajectory. Typically, p(g|ξs0→st) is
estimated using a cost function ζ that models what the
observer expects the robot to do:

p(g|ξs0→st) ∝
exp(−ζ[ξs0→st ]− vg(st))

exp(−vg(s0))
p(g) (2)

where vy(x) is the lowest cost path from x to y. ζ is
estimated and verified through user studies. To maximize
p(g∗|ξs0→st), one must minimize p(g ̸= g∗|ξs0→st), i.e.,
the probability of going to opposing goals. This is done by
following an ongoing path ξs0→st such that vg ̸=g∗(st) ≫
vg∗(st). For pick and place tasks, experiments [25] show:

ζ[ξ] =
1

2

∫
ξ′(t)2dt (3)

A trajectory is legible if the cost of reaching an opposing
goal is high while the cost of reaching the target goal is low.
From this equation, it is clear that longer, slower paths have
higher costs. For a pick-and-place task, straight line paths
that move quickly toward an object will have a low cost.

While these methods are useful for estimating
p(g∗|ξs0→st), deep learning models should be able to
directly learn this distribution from a training dataset. In this
paper, we present a generative learning framework where
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Fig. 2. Legibility Diffuser: This diagram shows the evaluation process for Legibility Diffuser. At each step, the model takes as input a sequence of τs
states as well as a target goal g∗ and an opposing goal g−. While generating a sequence of actions, we use diffusion model guidance to ensure that we
imitate the most legible actions from the training data. This is controlled by the guidance weight wt and the ratio term α which determines the portion
of negative guidance that goes to g− versus ∅. Once the actions are generated, we carry out τa of the τp predicted actions in open loop. The guidance
weight is decayed by γ before generating the next set of actions.

the learned generative policy is guided to directly generate
actions which maximize p(g∗|ξs0→st).

B. Sequential Decision Making

We view robot action generation as a sequential de-
cision making problem and model it as a discrete-time
infinite-horizon Markov Decision Process (MDP), M =
(S,A, T , ρ0), where S is the state space, A is the action
space, T (·|s, a) is the state transition distribution, and ρ0(·)
is the initial state distribution. At every step, an agent
observes a state st and queries a policy π to choose an action
at = π(st). The agent performs the action and observes the
next state st+1 ∼ T (·|st, at).

We augment this MDP with a set of absorbing goal states
G ⊂ S, where g ∈ G corresponds to a specific state of
the world in which the task is considered to be solved.
Every pair (s0, G) of an initial state s0 ∼ ρ0(·) and goals
for a task G corresponds to a new task instance. For the
purposes of legibility, we also define a target goal g∗ ∈ G
and an opposing goal g− ∈ G. We want our motion to g∗

to be distinct from motion to g− such that p(g∗|st, at) >
p(g−|st, at). We assume access to a dataset of N task
demonstrations D = {ξi}Ni=1 where each demonstration is
a trajectory ξi = (si0, ai0, si1, ai1, . . . , siT ) that begins in a
start state si0 ∼ ρ0(·) and terminates in a goal state siT = gi.

C. Conditional Denoising Diffusion Probabilistic Models

Conditional DDPMs [23] aim to estimate an unknown
conditional distribution q(x0|c) using a parameterized model
πθ(x0, c) based on sampled data x0 drawn jointly with
conditioning information c. The process consists of a forward
noising process and a reverse denoising process. The for-
ward process injects Gaussian noise into samples, producing
noised distributions qt(xt|c). The distribution of xt based
on x0 is given as q0t(xt|x0) = N (xt; x0, σ2

t I). During the
reverse denoising process, a prediction network ϵθ estimates
the noise added at time t: ϵθ(xt, t, c) ≈ ∇x log qt(xt|c).
This allows the uncorrupted data x0 to be recovered using a
stochastic differential equation originally laid out in [23].

xt−1 = ϕt(xt − ψtϵθ(xt, t, c) +N (0, σ2
t I)) (4)

Here ϕt, ψt, and σt are hyperparameters of the noise
scheduling process that can be tuned. In classifier free
guidance [13], the noise score ϵ̄θ(xt, t, c) is calculated by
combining the noise scores from a conditional estimate
ϵθ(xt, t, c) and an unconditional estimate ϵθ(xt, t, ∅):

ϵ̄θ(xt, t, c) = (1 + w)ϵθ(xt, t, c)− wϵθ(xt, t, ∅) (5)

The unconditional score estimation ϵθ(xt, t, ∅) is trained at
the same time as the conditional score estimation ϵθ(xt, t, c)
by setting class conditioning information c to a null token ∅
with probability puncond. Guidance weight w has the effect
of up-weighting the probability of data for which a classifier
pθ(c|xt) would assign high likelihood to the correct label.
This formulation has the benefit of not requiring a classifier
trained on partially corrupted data xt.

IV. LEGIBILITY DIFFUSER

A. Overview

The key contribution of our paper is framing legible mo-
tion generation as the output of guided conditional diffusion
policies. As described in section III-C, a conditional DDPM
πθ estimates an unknown conditional distribution q(x0|c) by
drawing samples x0 jointly with class conditioning infor-
mation c. These models can be guided to generate outputs
such that a classifier pθ(c|x0) trained on the same samples as
πθ would assign a high likelihood to the correct class label
[13]. In the setting of robotic policy generation, we train a
generative model to estimate q(at|st, g∗), the distribution of
actions at given the current state st and a target goal g∗.
Using diffusion guidance, we can generate outputs such that
a classifier pθ(g|at, st) would assign a high probability to
g∗. We notice that this resembles the objective of legible
motion generation, i.e. maximizing p(g∗|ξs0→st) (Eq. 2)
where ξs0→st is the ongoing trajectory. In this formulation,
(at, st) can be thought of as a small section (the most
recent section) of ξs0→st . If there is a human observing the



robot, then this collaborator is the classifier pθ(g|at, st) that
assigns a high probability to g∗. Below we detail how our
method, Legibility Diffuser, is able to leverage this property
of diffusion model guidance to generate legible robot motion.

B. Conditional Generative Policy Formulation

Legibility Diffuser (Fig. 2) is a DDPM that serves as
a visuomotor robot policy. Our work builds upon recent
advancements in DDPM-based policies, most notably Dif-
fusion Policy [10]. At each time step, we generate actions
At = a

t:t+τp
for an agent given initial states St = s

t:t+τs

and a goal state g. This is done by training a UNet-based
diffusion model policy πϕ(At|St, g). Once the actions are
generated, the agent carries out τa < τp steps in open
loop. Training samples are drawn from the demonstration
dataset by sampling sub-sequences of length τp that include
actions, states, and the goal state. We define the goal state
g as the final state in the demonstration. We construct our
conditioning term by concatenating St with τs repetitions of
g. In the style of classifier free guidance [13], we zero out g
to train πϕ(At|St, ∅) with probability puncond. Our training
procedure follow the standard formulation for DDMP train-
ing as laid out in III-C. Generating legible motion does not
require any additional steps during training. At evaluation,
we require access to a target goal and opposing goal(s) in
order to guide πϕ to generate legible actions.

C. Legibility Guidance

We guide our diffusion model policy πϕ towards the most
legible action sequence At at each timestep t. To do this,
we require access to a target goal g∗ that we hope our agent
reaches. We also require an opposing goal g− that we do not
want our agent to reach. For our motion to be legible, at every
timestep t an observer should be able to predict that the agent
is going to g∗ and not g−. In other words, p(g∗|St, At) >
p(g−|St, At). Again, because we are only looking at (St,
At), the most recent segment of the entire trajectory ξs0→st ,
this is a slight simplification of the true legibility objective
(Eq. 1) which maximizes p(g∗|ξs0→st). We achieve this
maximization through diffusion model guidance.

In previous works, ”A and not B” diffusion model compo-
sitions have been used to remove undesirable outputs during
image [26], language [27], and robotic action generation
[24]. Inspired by this, we generate legible motion through
”g∗ and not g−” compositions. At each denoising step k,
we calculate a noise score conditioned on the target goal
ϵθ(g

∗) := ϵθ(A
k
t , St, g

∗, k), the opposing goal ϵθ(g−) :=
ϵθ(A

k
t , St, g

−, k), and a null token ϵθ(∅) := ϵθ(A
k
t , St, ∅, k).

We combine these scores in a manner similar to classifier
free guidance (Eq. 5) to get a final noise score as follows:

ϵ̄θ(g
∗) = (1+wt)ϵθ(g

∗)−αwtϵθ(g
∗)− (1−α)wtϵθ(∅) (6)

Here, αt and wt are hyperparameters tuned via a ran-
domized grid search. The noise score is used to recover
an uncorrupted action sequence A0

t following the standard
stochastic process for DDPMs (Eq. 4). By increasing wt, we

guide πϕ to generate actions that are distinct from the outputs
of both an unconditional model and a model conditioned
on opposing goal g−. α is a ratio term that determines
the portion of guidance that goes to ϵθ(g

−) vs. ϵθ(∅). We
expect α ≈ 1 as guiding away from ϵθ(g

−) should directly
lead to actions where an observer predicts p(g∗|St, At) >
p(g−|St, At) (sec. IV-A).

D. Time-varying Legibility Guidance Decay

Inspired by techniques for legible motion generation in
HRI, we introduce a decaying term γ to our guidance
weights. This causes legibility guidance to be strongest at the
beginning of the trajectory. Various HRI papers have shown
that maximizing legibility is most important at the beginning
of a trajectory [1], [4] as we want observers to quickly infer
the goal state. The guidance weight only decays after τa
action steps, it is constant for every denoising step while
generating the open loop action sequence of length τp:

wt = γ · wt−τa (7)

Selective InteractionBlock Reach

Fig. 3. Environment Visualization: Legibility Diffuser is evaluated on
two tasks in two environments. We collect our own demonstration dataset
for block reach and we use the original Franka Kitchen dataset [28] for
selective interaction. Real world block reach visualization in Fig 1.

V. METHODS

A. Motivation

Through our experiments, we aim to show that Legibility
Diffuser can clone the most legible mode in a demonstration
dataset without sacrificing success rate. We evaluate our
method on four tasks across two environments in simulation
as well as one real world experiment. Legibility is measured
autonomously through hand designed score functions.

B. Tasks and Environments

For each task, we define a target goal state g∗ for the
agent to reach and an opposing goal state g− for the agent
to avoid. We assume access to low dimensional states and
proprioception. All data is collected through human teleop-
eration. Data is multi-modal in the sense that demonstrations
show multiple ways of reaching a goal.



Block Reach: This task is based on a frequently used
legibility experiment [1]. Two blocks are placed next to each-
other on a table, a robot arm is positioned on the other end
of the table. The robot reaches for one of the blocks and lifts
it. Assume there is an observer. If the agent moves directly
towards the blocks, it is unclear if the target is the left block
or the right block. If the agent takes a trajectory that swings
wide to one side, then g∗ can be easily predicted. These wide
trajectories are the legible trajectories.

Real: We run a real world experiment on a Franka Emika
Panda Robot using an OSC pose controller. We use April-
Tags [29] to predict low dimensional states, allowing for
sim-to-real transfer. 100 demonstrations are used to train the
agent and all roll-outs are run in open loop.

Robosuite: We use Robosuite [30] for our block reach
simulation and for sim-to-real transfer. Our block reach
simulation agent is trained on 200 demonstrations.

Selective Interaction (Franka Kitchen): In this task,
there are m objects in a scene o1, o2, ..., om and each object
has a corresponding goal position. The robot must move
n < m objects to their goal positions (within tolerance
ϵtol). A goal g can be described by this set of n objects.
g∗ and g− have n − 1 objects in common; there is only
one distinguishing object. We define o∗ as the distinguishing
object for g∗ and o− as the distinguishing object for g−. For
example, if g∗ = {o1, o2, o3} and g− = {o1, o2, o4}, o∗ = o3
and o− = o4. A legible agent should interact with o∗ early
in the trajectory so that an observe can quickly predict the
target goal. A legible agent should not interact with o− as
this would confuse the observer, resulting in an incorrect goal
prediction. This task evaluates long horizon legibility.

We adapt the Franka Kitchen environment and dataset
[28] for selective interaction. In Franka Kitchen there are
7 objects (m = 7) and we set n = 5 for the goal states. The
demonstrations show the robot interacting with four objects.
The four objects differ across demonstrations but always
follow a fixed interaction order (o1 → o2 → ... → o7). We
define three experiments with the level of difficulty based on
where o∗ and o− occur in this interaction order:

Kitchen Easy: o∗ = o1 and o− = o2. All the decisions
that impact legibility have a short horizon.

Kitchen Medium: o∗ = o3 and o− = o4. Critical interac-
tions are in the middle of the interaction sequence.

Kitchen Hard: o∗ = o6 and o− = o5. All decisions
impacting legibility have a long horizon.

C. Metrics

For each task we define a legibility score function which
captures the notion that an observer should predict p(g∗) >
p(g−). We use this score function for automated evaluation
of legibility. This allows us to benchmark a wider ranger
of algorithms and perform larger scale ablations. We also
evaluate task success rate.

Legibility Score - Block Reach: We use a distance-based
heuristic for this task. Many experiments have shown that
for pick and place tasks, legible trajectories maximize the

(a) IBC (b) c-BeT

(c) Diffusion Policy (d) Legibility Diffuser

Fig. 4. Block Reach Rollouts: 50 rollouts of Legibiltiy Diffuser and
baselines in simulation. C-Bet and Diffusion Policy capture the entire
training data distribution, IBC collapses on an arbitrary mode, Legibility
Diffuser collapses on the most legible mode.

distance to the opposing goal [1]. We draw inspiration from
these papers and calculate legibility as follows:

L(ξs0→g∗) =
∑

st∈ξs→g∗

||g− − st||2
t

(8)

The legibility values reported are normalized based on the
minimum and maximum values in the training dataset.

Legibility Score - Selective Interaction: We record to∗

and to− , the time-step at which the agent interacts with o∗

and o− respectively. We define the legibility score as:

L(ξs0→g∗) =
tmax − to∗

tmax
· 1o∗<o− (9)

Here tmax is the maximum time-step in the training
dataset and to∗ → tmax if the agent never interacts with o∗.
Failure to interact with o∗ or engaging with o− before o∗ both
result in a legibility score of 0. For example, in Kitchen Hard
o∗ = o6 and o− = o5. So roll-outs o1 → o2 → o5 → o6 and
o1 → o2 → o3 both get a legibility score of 0.

Success: For block reach we report roll-out success rate. A
roll-out is successful if the conditioned goal state is reached
before tmax. For selective interaction, we report the average
number of objects in g∗ moved to their goal position.

D. Baselines

Our baselines evaluate if Legibility Diffuser is more
capable of generating legible motion than other offline IL
algorithms. We train on multi-modal, multi-task data and
compare against algorithms that perform well on such data.



Block Reach Selective Interaction

Real Sim Easy Medium Hard

IBC [8] - .58 ± .13 0.0 ± .00 0.0 ± .00 0.0 ± .00
c-BeT [9] - .60 ± .21 .57 ± .38 .02 ± .08 .11 ± .14
Diffusion Policy [10] .42 ± .15 .77 ± .29 .67 ± .34 .39 ± .15 .22 ± .12
Legibility Diffuser (Ours) .68 ± .18 1.14 ± .15 .86 ± .03 .55 ± .09 .26 ± .08

Oracle 1.0 ± 0.0 1.0 ± 0.0 .83 ± .01 .78 ± .05 .73 ± .01
Dataset .45 ± .23 .45 ± .23 .60 ± .37 .42 ± .26 .26 ± .11

TABLE I
LEGIBILITY SCORES FOR OUR MODEL AND BASELINES AVERAGED OVER 50 SEEDS. THESE VALUES ARE CALCULATED USING THE LEGIBILITY SCORE

FUNCTIONS (EQ. 8, 9). BLOCK REACH REAL IS AVERAGED OVER 3 SEEDS AND 30 DEMONSTRATIONS.

Block Reach Selective Interaction

Real Sim Easy Medium Hard

IBC [8] - .92 .02 ± .14 .04 ± .20 0.0 ± 0.0
c-BeT [9] - .98 1.1 ± .83 .44 ± 1.02 2.22 ± 1.77
Diffusion Policy [10] .97 1 3.32 ± .97 3.54 ± .61 3.86 ± .45
Legibility Diffuser (Ours) .97 1 4.00 ± .35 3.48 ± 0.78 3.90 ± .36

TABLE II
SUCCESS RATE OF OUR MODEL AND BASELINES AVERAGED OVER 50 SEEDS. FOR SELECTIVE INTERACTION WE REPORT THE AVERAGE NUMBER OF

OBJECT INTERACTIONS. BLOCK REACH REAL IS AVERAGED OVER 3 SEEDS AND 30 DEMONSTRATIONS.

Conditional Behavioral Transformers (c-BeT) [9]: c-
BeT is a behavioral cloning algorithm with a transformer
backbone. This algorithm discretizes the action space and
generates roll-outs using action chunking. It is known to learn
effective conditional policies from multi-task, multi-modal
play data.

Implicit Behavioral Cloning (IBC) [8]: IBC is an energy
based behavioral cloning algorithm. We condition this model
in the same manner as Legibility Diffuser, concatenating the
target goal state to the current state

Diffusion Policy [10]: Diffusion policy is the DDPM that
Legibility Diffuser is built on. We implement and evaluate
a goal conditioned version of diffusion policy, isolating the
effect of our contributions. This is equivalent to Legibility
Diffuser with guidance weight (w) set to zero.

Classical Legibility (Oracle): Classical legibility methods
require oracle access to the underlying cost function that cap-
tures an observer’s expectations (Section III-A). Therefore,
this baseline is assumed to perform optimally. For the block
reach task, this is an agent that imitates the most legible
trajectory in the training dataset. For selective interaction,
this agent’s first interaction is with o∗.

Training Dataset (Dataset): We report the legibility
statistics of our training dataset.

E. Ablation Study

We conduct a comprehensive hyperparameter ablation on
two tasks in simulation, block reach and selective interaction
medium. We perform an ablation over α (Eq. 6) and γ (Eq.
7) as we vary guidance weight w. When we ablate over α,
γ is set to the tuned value from training (and visa versa).

Block Reach Selective Interaction

Real Sim Easy Medium Hard

w 5.0 7.5 5.0 5.0 1.0
α 0.9 1.0 0.9 0.9 0.9
γ 0.5 0.5 0.75 0.95 1.0

TABLE III
TUNED HYPERPARAMETERS (EQ. 6, 7) FOR LEGIBILITY DIFFUSER

VI. RESULTS

Legibility Diffuser produces legible robot motion. As
shown in Table I, our method generates trajectories that
are more legible than any of the imitation learning base-
lines. Results from t-test analysis reveal that for all tasks,
the differences between our method and the baselines are
statistically significant (p < .05). Additionally, across all
tasks we meet or exceed the average legibility in the training
dataset. For block reach - sim and selective interaction -
easy, Legibility Diffuser even achieves oracle performance
and matches the expected legibility of classical methods.
However, our method is certainly still constrained by the
training data. This is best seen with selective interaction -
medium and hard where our agent is unable to go directly
to o∗. The demonstration dataset lacks these legible modes,
and generalization of generative models is an open area of
research. A dataset that is more multi-modal than Franka
Kitchen is likely better suited for the selective interaction
task. Overall, our method is able to imitate legible behaviors
from a multi-modal dataset without any access to the cost
functions and classical motion planners typically required for
legible motion generation.

Optimizing for legibility does not sacrifice success rate.
From Table I we see that our method is able to maintain state
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Fig. 5. Alpha Ablation - Legibility: We ablate over α while varying
guidance weight w (Eq. 6). α ≈ 1 gives us a high legibility on both tasks
across all of the guidance weights.
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Fig. 6. Alpha Ablation - Success: We ablate over α while varying guidance
weight w (Eq. 6). For most guidance weights, success rate is not particularly
sensitive to α.
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Fig. 7. Gamma Ablation - Legibility: We ablate over γ while varying
guidance weight w (Eq. 7). γ → 1 leads to higher legibility as long as
success rate is maintained (Fig. 8).
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Fig. 8. Gamma Ablation - Success: We ablate over γ while varying
guidance weight w (Eq. 7). Across all guidance weights we see that success
rate decreases as γ → 1.

of the art success rates across all tasks while maximizing
legibility. For selective interaction - easy we actually see
that Legibility Diffuser achieves the highest success rate.
We hypothesize that this is because classifier free guidance
is also useful for constraint satisfaction [24]. Without this
stronger conditioning, the model will occasionally interact
with an object that is not in the goal state. IBC and c-
BeT both struggle to complete the longer horizon selective
interaction tasks. This is exasperated by the fact that the
conditioned goal has five objects, which is slightly out of
distribution of the training data with four objects.

Increasing guidance weight increases legibility: In both
our α (Fig. 5) and γ (Fig. 7) ablations, we notice a positive
correlation between legibility and guidance weight. This
suggests that legibility guidance is successfully pushing the
agent to the most legible modes in the data. The trend only
breaks down at high guidance weights when we see success
rates decrease as well (Fig. 6, 8). Specifically, this happens
for the selective interaction task which requires successful
object interactions to evaluate legibility (Eq. 9).

Time-varying guidance weight is a critical component
of Legibility Diffuser. Our ablation study over γ shows that
guidance weight decay has a large effect on the performance
of the model. For both block reach and selective interaction,
we notice that increasing the guidance weight causes the

success rate to decrease. The effect is most pronounced when
γ = 1 (Fig. 8). Empirically, we find that high guidance
weights throw the agent out of distribution, and it is often
unable to recover. By decreasing the guidance weight over
the course of the trajectory (γ < 1), we are able to maintain
a high success rate while having a large initial guidance
weight (Fig. 8). These high guidance weights are critical
for legibility, so proper tuning of γ allows us to get good
performance on both metrics at the same time. We find
that the appropriate decay rate, γ, is relatively task specific.
Generally, for longer horizon tasks, γ → 1.

Negative guidance on opposing goal g− is helpful for
Legibility Diffuser: When ablating over α (Fig 5, 6), we
observe less consistent trends compared to our ablation over
γ. However, we achieve good performance for both tasks
and metrics when α ≈ 1. This means that the majority of
our guidance weight, w, is directed towards guiding away
from g− (Eq. 6).

VII. DISCUSSION AND FUTURE WORK

With Legibility Diffuser, we show that legible robot mo-
tion can be generated directly from a dataset of multi-modal,
multi-task human demonstrations. This data driven approach
does not require access to the hand designed cost functions or
classical motion planners that are typically needed for legible



motion generation. We evaluate our model on tasks where
an observer’s cost function is easy to estimate, but Legibility
Diffuser can be applied to any task or mulit-modal dataset.

We show that the objective for guided diffusion models
matches the objective for legible motion generation. By
placing a large negative guidance weight on ϵθ(g

−) (the
noise score of a model conditioned on opposing goal g−),
we are able to generate legible robot motion. Decaying this
guidance weight over time allows us to maintain competitive
success rates. Without weight decay (γ < 1), high guidance
weights lead to a trade-off between legibility and success
rate. This suggests that standard classifier free guidance,
which does not have weight decay, may not be ideal for
imitation learning. Further investigation of this phenomenon
on a larger range of datasets is needed before concrete
conclusions can be drawn. Our experiments focus on leg-
ibility, so we make use of domain knowledge and have
high guidance only at the beginning of the trajectory, where
legibility is most important [1], [4]. For other tasks and
scenarios, learning a state conditioned guidance weight may
be more appropriate.

Our experiments show that the effectiveness of Legibil-
ity Diffuser depends on the diversity of the demonstration
dataset. This is evident by the limited legibility in the Franka
Kitchen environment. In future work we plan to train on
larger datasets with greater multi-modality. Additionally, we
hope to evaluate the legibility of our method through an
in-depth user study. The key takeaway from this paper is
that given a multi-task, multi-modal dataset, guided diffusion
models can produce actions that maximizes the same objec-
tive as legible robot motion. We hope Legibility Diffuser is
useful for future deep learning approaches to HRI.
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